# Geographic Data Science 

Vector

Elisabetta Pietrostefani \& Carmen Cabrera-Arnau
(Geo)visualisation

122849398877684868218989847364797255666862637274676567646875726774748873779873 1071161297262971816888101868177667778596364615858585961667873766967786683828186 86889399858679879018084828471727963616365595253595462697470585672546053546971 । 869911211389957679909585859276677863656768625862686170767874585569727464697687 871871109578998689949386838778688867798272636669706567707876615669627678655758 847580979685761891838989817679778582979779676772697171728287757186808995877873 9698104931229681861038697877282868284959682666266698482829499988918898838081881 979819073959487909882188987489897473768174605157697767698883737596827166605050 8389978881188888883858510588899171779378184636872796481747695926454584471869891 1057518412877688711218810191107888086848185708186857185736171887182958788859364 18672728997102112766978791909387899889199888818389797489779510483798689888391671 8713912894958110492183118918585899795102991101029378836581891901051147872101979811 1031228877180718779102100828718418411211018895105848379978893899091112797818276891 96183183123113871131801848683104118918676190187180741841808796199799698102851039192 91189113125105989275977877871041041231859411111596118112849292741019811010212318311 ' 100122929918998779989928882891061277710010112911818118810418096186110811129618310511 12010411094918599851109611312710312411797109951358992115918810410518594971051881271 1039618810218310111518311410411618991118118921059812394941889811811011110310010198105 8384101180185111127126126951101121811011061021111101861021021839412218611618412012997 : $89951851801801106128125119881101161151011861861111168918611318889184104115971201229310:$ 10611812011510410218010518310212310318611511793981138618311511498104112115861831888411 971181241271161119396111188128183182110188999711399991021861881161141169710911394989 84113122134128123991901261871091181871229411211018819997180101108117113114110115119110 9412312814013413010218412111711512018611498109117941839418610511011212811310595184112 : 9611311811412212711914411711110111818911196989310511811919910612510912411510798931821 1. 1011111141111881221281191851881041851841151201289218518318697941111841281161118498188 11512211911612111911812511711711891919818718418011811611511318311111311111311518718211 (12 12612912512512411811312111611011896110186113102981111171201211071901891831181141871841 I. 11912712712612511418511118496106182116183199188911861151181221079418418319911218510111 t 11112212512412411610911110510110710598859318611818811812312211399111111112113187102110 18812412511811711611311311411519919918218718911811499115122120114181188117112114115188 :
 125119183118123119128188117186128101124185116104114102124134104105138121122113107180186 1101101211612010111511818818916611611612512012112499126126186113112188125122112117121 11510112118312010110710511311610512211112811712211490114110113134118124112159911712611 123106118182114188190111119115113112116115113111127112112188129133119124116127101118129

"Data graphics visually display measured quantities by means of the combined use of points, lines, a coordinate system, numbers, symbols, words, shading, and color."

The Visual Display of Quantitative Information. Edward R. Tufte.

## Visualization

By encoding information visually, they allow to present large amounts of numbers in a meaninful way. If well made, visualizations provide leads into the processes underlying the graphic.

The Visual Display of Quantitative Information. Edward R. Tufte.

## Geovisualization

## Tufte (1983)

"The most extensive data maps [...] place millions of bits of information on a single page before our eyes. No other method for the display of statistical information is so powerful"

## MacEachren (1994)

"Geographic visualization can be defined as the use of concrete visual representations -whether on paper or through computer displays or other media-to make spatial contexts and problems visible, so as to engage the most powerful human information processing abilities, those associated with vision."

## Geovisualization

- Not to replace the human in the loop, but to augment her/him.
- Augmentation through engaging the pattern recognition capabilities that our brain inherently has.
- Combines cartography, infovis and statistics


## A map for everyone

Maps can fulfill several needs, looking very different depending on the end-goal.

MacEachren \& Kraak (1997) identify three main dimensions:

- Knowledge of what is being plotted
- Target audience
- Degree of interactivity


## MacEachren \& Kraak (1997)



## DiBiase's (1990) "Swoopy"

Translating numbers into a (visual) language that the human brain "speaks better"


## Exploratory Visualization

"forces us to notice what we never expected to see" (Tukey 1977: vi)

- Mostly for ourselves in the course of the research process.
- Many, quick and dirty, and rather unattractive graphs.


## Explanatory Visualization

"forces readers to see the information the designer wanted to convey" (Kosslyn 1994: 271)

- Mostly for others after the research is completed.
- Few, carefully crafted, and attractive graphs.


## Modifiable Areal Unit Problem (Openshaw, 1984)












## MAUP

## Scale and delineation mismatch between:

- Underlying process (e.g. individuals, firms, shops)
- Unit of measurement (e.g. neighborhoods, regions, etc.)
- In some cases, it can seriously mislead analysis on aggregated data (e.g. Flint)

Always keep MAUP in mind when exploring aggregated data!!!

## Choropleths

## Choropleths

Thematic map in which values of a variable are encoded using a color gradient of some sort

- Counterpart of the histogram Both allows us to gage the distribution of a variable
- Values are classified into specific colours: value -> bin
- Information loss as a trade off for simplicity

Key decision to be made why a given value is a specific colour!

## Classification choices

- N. of bins
- How to bin?
- Colours


## How many bins?

- Trade-off: detail vs cognitive load
- Exact number depends on purpose of the map
- Usually not more than 12


## How do we bin?

## Essentially a statistical problem

## Unique values

- Categorical data
- No gradient (reflect it with the colour scheme!!!)
- Examples: Religion, country of origin...

Status Majority


## Equal interval (continuous)

- Take the value span of the data to represent and split it equally
- Splitting happens based on the numerical value
- Gives more weight to outliers if the distribution is skewed



## Quantile

- Regardless of numerical values, split the distribution keeping the same amount of values in each bin
- Splitting based on the rank of the value
- If distribution is skewed, it can put very different values in the same bin



## Different type of algorithms will optimize for different types of splits

- Fisher-Jenks
- Natural breaks
- Outlier maps: box maps, std. maps...

Some involve some fairly fancy statistics.

## Colour palette

Categories, non-ordered


Graduated, sequential


Graduated, divergent
$\square$
TIP: check ColorBrewer for guidance

## Tips

- Think of the purpose of the map
- Explore by trying different classification alternatives
- Combine (geo)visualisation with other statistical devices



## Where Food Imports Are Affected by the Ukraine Crisis

Share of food imports per country affected by export restrictions elsewhere (in percent of calories)


As of August 1, 2022. Excludes exports held back from Ukraine.
Source: International Food Policy Research Institute


## Questions

@ © ©
Geographic Data Science by Elisabetta Pietrostefani is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

